81 research outputs found

    The interstellar gas-phase chemistry of HCN and HNC

    Full text link
    We review the reactions involving HCN and HNC in dark molecular clouds to elucidate new chemical sources and sinks of these isomers. We find that the most important reactions for the HCN-HNC system are Dissociative Recombination (DR) reactions of HCNH+ (HCNH+ + e-), the ionic CN + H3+, HCN + C+, HCN and HNC reactions with H+/He+/H3+/H3O+/HCO+, the N + CH2 reaction and two new reactions: H + CCN and C + HNC. We test the effect of the new rate constants and branching ratios on the predictions of gas-grain chemical models for dark cloud conditions. The rapid C + HNC reaction keeps the HCN/HNC ratio significantly above one as long as the carbon atom abundance remains high. However, the reaction of HCN with H3+ followed by DR of HCNH+ acts to isomerize HCN into HNC when carbon atoms and CO are depleted leading to a HCN/HNC ratio close to or slightly greater than 1. This agrees well with observations in TMC-1 and L134N taking into consideration the overestimation of HNC abundances through the use of the same rotational excitation rate constants for HNC as for HCN in many radiative transfer models.Comment: Accepted for publication in MNRA

    The gas-phase chemistry of carbon chains in dark cloud chemical models

    Full text link
    We review the reactions between carbon chain molecules and radicals, namely Cn, CnH, CnH2, C2n+1O, CnN, HC2n+1N, with C, N and O atoms. Rate constants and branching ratios for these processes have been re-evaluated using experimental and theoretical literature data. In total 8 new species have been introduced, 41 new reactions have been proposed and 122 rate coefficients from kida.uva.2011 (Wakelam et al. 2012) have been modified. We test the effect of the new rate constants and branching ratios on the predictions of gas-grain chemical models for dark cloud conditions using two different C/O elemental ratios. We show that the new rate constants produce large differences in the predicted abundances of carbon chains since the formation of long chains is less effective. The general agreement between the model predictions and observed abundances in the dark cloud TMC-1 (CP) is improved by the new network and we find that C/O ratios of 0.7 and 0.95 both produce a similar agreement for different times. The general agreement for L134N (N) is not significantly changed. The current work specifically highlights the importance of O + CnH and N + CnH reactions. As there are very few experimental or theoretical data for the rate constants of these reactions we highlight the need for experimental studies of the O + CnH and N + CnH reactions, particularly at low temperature.Comment: Accepted for publication in MNRA

    A Kinetic Study of the Gas-Phase O( 1 D) + CH3OH and O( 1 D) + CH3CN Reactions. Low Temperature Rate Constants and Atomic Hydrogen Product Yields

    Full text link
    Atomic oxygen in its first excited singlet state, O(1 D), is an important species in the photochemistry of several planetary atmospheres and has been predicted to be a potentially important reactive species on interstellar ices. Here, we report the results of a kinetic study of the reactions of O(1 D) with methanol, CH3OH, and acetonitrile, CH3CN, over the 50-296 K temperature range. A continuous supersonic flow reactor was used to attain these low temperatures coupled with pulsed laser photolysis and pulsed laser induced fluorescence to generate and monitor O(1 D) atoms respectively. Secondary experiments examining the atomic hydrogen product channels of these reactions were also performed, through laser induced fluorescence measurements of H(2 S) atom formation. On the kinetics side, the rate constants for these reactions were seen to be large (> 2 x 10-10 cm 3 s-1) and consistent with barrierless reactions, although they display contrasting dependences as a function of temperature. On the product formation side, both reactions are seen to yield non-negligible quantities of atomic hydrogen. For the O(1 D) + CH3OH reaction, the derived yields are in good agreement with the conclusions of previous experimental and theoretical work. For the O(1 D) + CH3CN reaction, whose H-atom formation channels had not previously been investigated, electronic structure calculations of several new product formation channels were performed to explain the observed H-atom yields. These calculations demonstrate the barrierless and exothermic nature of the relevant exit channels, confirming that atomic hydrogen is also an important product of the O(1 D) + CH3CN reaction

    Kinetic Study of the Gas-Phase Reaction between Atomic Carbon and Acetone. Low Temperature Rate Constants and Hydrogen Atom Product Yields

    Full text link
    The reactions of ground state atomic carbon, C(3P), are likely to be important in astrochemistry due to the high abundance levels of these atoms in the dense interstellar medium. Here we present a study of the gas-phase reaction between C(3P) and acetone, CH3COCH3. Experimentally, rate constants were measured for this process over the 50 to 296 K range using a continuous-flow supersonic reactor, while secondary measurements of H(2S) atom formation were also performed over the 75 to 296 K range to elucidate the preferred product channels. C(3P) atoms were generated by In-situ pulsed photolysis of carbon tetrabromide, while both C(3P) and H(2S) atoms were detected by pulsed laser induced fluorescence. Theoretically, quantum chemical calculations were performed to obtain the various complexes, adducts and transition states involved in the C(3P) + CH3COCH3 reaction over the 3A'' potential energy surface, allowing us to better understand the reaction pathways and help to interpret the experimental results. The derived rate constants are large, (2-3) x 10-10 cm3 s-1 , displaying only weak temperature variations; a result that is consistent with the barrierless nature of the reaction. As this reaction is not present in current astrochemical networks, its influence on simulated interstellar acetone abundances is tested using a gas-grain dense interstellar cloud model. For interstellar modelling purposes, the use of a temperature independent value for the rate constant, k(C+CH3COCH3 )= 2.2 x 10-10 cm3 s-1, is recommended. The C(3P) + CH3COCH3 reaction decreases gas-phase CH3COCH3 abundances by as much as two orders of magnitude at early and intermediate cloud ages.Comment: Accepted for publication in ACS Earth and Space Chemistry. 55 pages including S

    The C(3P) + NH3 reaction in interstellar chemistry: II. Low temperature rate constants and modeling of NH, NH2 and NH3 abundances in dense interstellar clouds

    Full text link
    A continuous supersonic flow reactor has been used to measure rate constants for the C + NH3 reaction over the temperature range 50 to 296 K. C atoms were created by the pulsed laser photolysis of CBr4. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence (VUV LIF) of C loss and through H formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of 1.8 10-10 cm3 molecule-1 s-1 at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas-grain interactions. In particular, the effect of the ortho-to-para ratio of H2 which plays a crucial role in interstellar NH3 synthesis is examined

    Crossed-beam universal-detection reactive scattering of radical beams characterized by laser-induced-fluorescence: the case of C2 and CN

    No full text
    International audienceWe have generated continuous supersonic beams of dicarbon (C2) and cyano (CN) radicals by a high-pressure radio-frequency discharge beam source starting from dilute mixtures in rare gases of suitable precursor molecules. We have subsequently characterized their internal quantum state distributions by laser-induced-fluorescence (LIF) in a new crossed molecular beam-laser apparatus. We have used these supersonic beams to study the reactive scattering of C2 and CN radicals with unsaturated hydrocarbons. We report here on the C2 and CN radical beam characterization by LIF and on dynamics studies of the reactions CN + C2H2 (acetylene) and CN + CH3CCH (methylacetylene) by the crossed molecular beam scattering technique with universal mass spectrometric detection and time-of-flight analysis. The role of CN rovibrational excitation on the dynamics of the CN + C2H2 reaction is discussed with reference to previous dynamics and kinetics studies. These reactions are of interest in the chemistry of planetary atmospheres (Titan) and the interstellar medium as well as in combustion

    Kinetics and Dynamics of the S(^1D_2) + H_2 \to SH + H Reaction at Very Low Temperatures and Collision Energies

    Full text link
    We report combined studies on the prototypical S(^1D_2) + H2 insertion reaction. Kinetics and crossed-beam experiments are performed in experimental conditions approaching the cold energy regime, yielding absolute rate coefficients down to 5.8 K and relative integral cross sections to collision energies as low as 0.68 meV. They are supported by quantum calculations on a potential energy surface treating long range interactions accurately. All results are consistent and the excitation function behavior is explained in terms of the cumulative contribution of various partial waves

    Review of OCS gas-phase reactions in dark cloud chemical models

    Full text link
    The association reaction S + CO {\to} OCS + hnu has been identified as being particularly important for the prediction of gas-phase OCS abundances by chemical models of dark clouds. We performed detailed ab-initio calculations for this process in addition to undertaking an extensive review of the neutral-neutral reactions involving this species which might be important in such environments. The rate constant for this association reaction was estimated to be several orders of magnitude smaller than the one present in current astrochemical databases. The new rate for this reaction and the introduction of other processes, notably OH + CS {\to} OCS + H and C + OCS {\to} CO + CS, dramatically changes the OCS gas-phase abundance predicted by chemical models for dark clouds. The disagreement with observations in TMC-1 (CP) and L134N (N), suggests that OCS may be formed on grain surfaces as is the case for methanol. The observation of solid OCS on interstellar ices supports this hypothesis.Comment: Accepted for publication in MNRA
    corecore